XTractor 1. Documentation
1

XTractor version 1
October 8, 2009

Documentation
author: Alois Heuboeck

a.heuboeck@reading.ac.uk
document last changed: March 3, 2010
© Paul Thompson 2009-2010
1. Version history

	version
	date
	changes

	1.0
	8/10/2009
	

	1.1
	3/3/2010
	bugs fixed: (1) Excel output format could not be accessed (radio button did not respond)
(2) ‘extract occurrences of tags only’ could not be accessed (checkbox did not respond)

2. About XTractor

XTractor is a free, non-open source programme. It may be used and re-distributed free of charge, provided that no claim to ownership is made, and it is not distributed for profit . The copyright is held by Paul Thompson.
Please send suggestions for future versions and reports of bugs to Alois Heuboeck: a.heuboeck@reading.ac.uk.
3. General functioning of the programme

The purpose of XTractor is to extract content matching specified criteria from text files containing XML-style markup. These text files will be called corpus files, or input files of the programme. The file that text is extracted to is called an output file.
4. Getting XTractor to work (‘installation’)

XTractor does not need to be installed. The programme consists of an executable file called something like ‘XTractor 1.0.jar’ (1.0 being the version number) and a folder called ‘lib’, containing, in turn, two jar files. The ‘lib’ folder and the ‘XTractor...jar’ file must be put in the same folder.
The programme is launched by double-clicking the ‘XTractor...jar’ file. For executing the file, Java runtime environment must be installed on the computer.

5. Input files
a) File format

Input files must be in plain text format (e.g. extensions *.txt, *.xml, *.sgml etc.). The programme can not read and process, for example, Word files, PDF, etc.
b) Markup conventions
The input files may contain markup generally following XML-/SGML-style. The specific requirements and limitations of markup will be described in this section.

Markup is added through tags, which are delimited by < and >. Conversely, the characters < and > may only be used as tag delimiters. Where they need to appear as characters in the text, it is advisable to replace them with some combination of special characters, for example the entity references < and >. No line breaks must occur within tags, i.e. between < and >.

Tags can be opening, closing or empty tags; examples of these are:

<utterance>
opening tag “utterance”

</utterance>
closing tag “utterance”

<utterance/>
empty tag “utterance”²
In the above examples, “utterance” is the tag name. The tag name must consist of any combination of one of more of the following characters:
· upper and lower case letters of the English alphabet: A-Z and a-z
· numbers: 0-9

· other characters: _ - . (underscore, hyphen, dot)
Opening and empty tags can have attributes and values. Examples are:
<utterance speaker="John">

<utterance speaker="John"/>

In this example, the tags have the attribute “speaker”, whose value is “John”. Attributes and values are given as pairs and are separated by an = sign (which may be surrounded by spaces). A tag may contain any number of attributes, as long as they have different names. The order of attributes within a tag is irrelevant.

On possible attribute names, the same restrictions apply as for tag names. The space character is used to separate the first attribute from the tag name, and subsequent attribute names from the values of the preceding attribute. Attribute values may contain “special” characters and are delimited using single or double quotes (the characters ' and "); for this reason, attribute values must not contain these characters.
N.b: If attribute values are not delimited, the value for an attribute is taken to be the string up to the first space character or >; however, not delimiting attribute values is discouraged as it may produce unexpected results.
Unlike XML, the contents of elements (i.e. everything included in a tag) can partially overlap; thus, the following example is a valid structure:
<a>

some content

some more

another bit

By default, XTractor treats an opening tag without matching closing tag like an empty tag. However, practice must be consistent; closed and unclosed tags of the same name must not be mixed within one source file.
XML comments are delimited by <!-- (start) and --> (end); they may not occur within tags. More precisely, a comment includes everything from one <!-- to the next -->. There can be no comments within comments, and comments cannot partially overlap. Text within comments is ignored both for parsing (i.e. tags within comments do not appear in the tag lists) and for extraction.
6. Using the programme: interface
XTractor allows three basic operations:
· defining a corpus
· defining conditions for extraction

· extracting text matching conditions

In addition, preview facilities are provided.

a) Define a corpus
The commands for defining the corpus are located on the XTractor interface in the blue area entitled “Corpus” (right top corner).
The following commands are available:

“load file(s)”: opens an Explorer window that allows one to choose files that should be “loaded” for analysis; multiple files can be selected. The list of the currently loaded corpus is displayed in the list “Files loaded”.

“unload selected file(s)”: the file(s) selected in the window “Files loaded” are removed from the corpus for analysis.

By checking the option “show full path”, paths of the corpus files rather than just file names are displayed in “Files loaded”.
b) Define conditions for extraction

The conditions for extraction can be defined specifying the following options: “What to extract”, “The extract also must contain” and “The extract must be contained within”. Each of them is defined by tags, attributes and values that the text to extract must match.
1) What to extract (orange area): defines the content of which elements should be extracted, specified in terms of tag name, attributes and values.
2) The extract also must contain (dark pink area): impose (further) constraints on the content of extracts: tag names, attributes, values and text content.
3) The extract must be contained within (light blue area): impose (further) constraints on the larger structure within which the extract must be contained: tag names, attributes and values.
How to select conditions: All three conditions are specified with respect to tag names, attributes and values.
The lists of tag names are populated with all the tags available in the corpus; in 1) and 3), only non-empty tags are given, whereas the list in 2) also contains empty tags. One or more tag names can be selected; the condition for extraction is met if the name if

1) the tag in which it is contained (“parent” in XML jargon),

2) any tag contained in the sequence (“child”), or

3) any tag in which the “parent” is, directly or indirectly, contained (“ancestor”)

is selected in the list.
By selecting one or more tags, the “Attributes” list will be populated with all attribute names that appear in any of the tags selected. To further restrict the criterion of selection, one or more attributes can be selected. A sequence matches the attribute conditions for extraction if
1) its “parent” element,

2) any of its “child” elements, or

3) any of its “ancestors”

has at least one attribute whose name is selected.
By selecting one or more attributes, the “Values” list will be populated with all values that appear for any of the attributes selected, within any of the elements selected. (N.b.: Values of the attribute that are used only in elements which are not selected will not appear in the list.) One or more values can be selected. A sequence matches the conditions for attribute values if one or more of its attributes matching the attribute condition 1), 2) or 3) have a value which is selected. (N.b.: The condition is not fulfilled by a value appearing in an attribute which is not selected.)
Text content: In addition to defining tag names, attributes and elements of extracts, their “child” and “ancestor” elements, restrictions can be imposed on text that an extract must contain. The condition is entered in the field labelled “Text (regular expression)” (in the dark pink area) and is formulated as a regular expression. If you are not familiar with the syntax of regular expressions, note that
1) a simple sequence of letters, numbers, space characters and most “special” characters is a regular expression denoting a sequence of exactly these characters (case sensitive);
2) the following characters have a special function; if they are intended as literal characters, they should be preceded by a back slash (\):

. + ? * () [] \ | ^ $

For more information on the syntax of regular expressions see, for example:
http://en.wikipedia.org/wiki/Regular_expression
http://java.sun.com/docs/books/tutorial/essential/regex/index.html

The condition of “text” content is met if a sequence contains the text denoted by the regular expression (the extract “matches” the expression). If the option “print tags with extract” is selected (cf. below sect. 7.a), the extract text includes tags and the text proper.
The extracts created by XTractor are the maximal sequences fulfilling all three sets of constraints (parts of extracts do not appear as separate extracts).

Get help on tags: the command “get tags in corpus” (in the light pink area) opens a new window displaying all (opening, closing and empty) tags with their attributes used in the corpus together with their numbers of occurrences.
c) Extract text

There are two command buttons for extracting text, both located in the light pink area: “preview” and “extract”. Both become available once a selection has been made in the list of tags in “what to extract”.

“Extract” opens a file search window and extracts content of the entire corpus loaded matching the specified conditions to the specified output file. If no extension is given, XTractor will add the extension “.txt” (for XML style output) or “.xls” (for “Excel” style output) to the output file name. If the output file exists already, it is overwritten without further warning. If a file of the name given does not exist, the “extract” command will create one in the folder opened.

“Preview” displays the content that would be extracted from the first file selected in the “Files loaded” list in the lower preview window. The method of extraction and formatting of the extracts are the same as with the “extract” command.
The output of the extract and preview commands is described in section 7.

d) Preview windows
Two preview windows are located in the green area, entitled “Preview”:
“Source text (selected file)”: previews the file which is selected in the “Files loaded” list; if more than one file is selected, the first is displayed. The contents of this window automatically change if the file selected in “Files loaded” changes.
“Output text (selected file – preview)”: previews the output of “extract” on the first selected file in “Files loaded” (the same whose content is displayed in the first preview window) after executing the “preview” command (in the light pink area). The contents of this window only change after another execution of the “preview” command.
7. Output files and formats
The output of the “extract” command is written to an output file; the output of the “preview” command is shown in the lower preview window. “Extract” extracts from the entire corpus loaded, whereas “preview” only previews extractable text of the file selected in “Files loaded”.

The output consists of a series of extracts, each of them representing a span of extractable input text, i.e. text matching the specified extraction conditions.

a) Content of extracts

Every extract contains the following information:
· source file from which it has been extracted

· number of extract (extracts are numbered per source file)

· extract text

The source file is given as the name (not full path) of the corpus file from which the segment has been extracted.
The extracts are numbered per source file; numbering starts with 1 for each source file.

The content of the text extracted can be specified, by checking the according option boxes in the light pink area, to include either:
· text content + tags (check “print tags with extract”);

· text content without tags (uncheck that option); or

· tags only (check “extract occurrences of tags only”)

Scope of extracts: Every bit of extractable text is extracted only once; i.e. there are no extracts within extracts. If one bit of text matches the extracting conditions more than once, it is included in the largest extract. Thus, given the following text:
<r>content of r</r>

<r>

content of second r

<s n="1">content of s 1

<t>content of t</t>

<u>content of u</u>

<s n="2">content of s2<s>`
</s>

</r>

The (only) extract matching <s> is s1:
<s n="1">content of s 1

<t>content of t</t>

<u>content of u</u>

<s n="2">content of s2<s>

</s>

b) Format of extracts

Extracts can be written to the output file or displayed in the preview window in two different formats (choose radio buttons “Output format” in the light pink area): “XML format” and “Excel format”.

in XML format (markup) or in “Excel” format (tab delimited; specify through radio button).

XML format: The contents of the output are arranged in an XML-like style: each extract appears in an element <extract>, with a “file” attribute (value = source file name) and an “n” attribute (value = extract number). If written to an output file, an element <extracts> contains all <extract> tags, and an XML declaration is added.
N.B.: Because structures that are invalid according to XML rules are allowed in the input files (opening tags not matched with closing tags, partly overlapping elements), it is possible that the content of the output file is, actually, not valid XML.
Excel format: The contents of the extract appear in three tab-delimited columns, containing: input file name, extract number, extract text. Therefore, line breaks and tab characters in the extract text are replaced with simple space characters.
